亚洲人妻一区二区,国产麻豆视频一区,狠狠狠综合7777久夜色撩人,波多野结衣毛片

In the Internet era, large-scale knowledge graphs and their computations serve as a "soft" infrastructure for intelligent information processing of massive amounts of content. In academic innovation and open-source sharing, Tsinghua University contributed world-leading and influential results by proposing and constructing the systematized basic algorithms of large-scale knowledge graph representation learning.

 8A.png

The Overall Importance of Knowledge Graph Representation Learning in Artificial Intelligence Research and Application

World-leading systematized basic algorithms for representation learning of large scale knowledge graph

A new generation of artificial intelligence is facing the challenge of large-scale knowledge graph computing. To address three key scientific problems in large-scale knowledge graph representation learning, this project develops systematized fundamental algorithms based on the deep learning paradigm. These problems include the complexity of internal relation types, the complexity of internal reasoning paths, and the insufficient utilization of external rich information. There have been numerous technological innovations, including : The transR algorithm based on relation-specific semantic space projection, the PTransE algorithm for complex relation path reasoning, the TADW algorithm for the fusion of entity-related text attributes, the DKRL algorithm for the fusion of entity definition text description information, and TKRL algorithm for the fusion of entity-related type hierarchy information. The ATT algorithm integrates relational text description information, and the JointE algorithm, employs a mutual attention mechanism in order to perform language modelling and knowledge graph representation learning simultaneously.

This project's eight representative papers have received extensive attention and citations in the international academic community, with a total of 6,185 citations in Google Scholar (the highest citation for a single paper reaches 2,611). Citations include Turing Award winner Yoshua Bengio, National Academy of Engineering member Tom Mitchell, and American Academy of Arts and Sciences member Tomaso Poggio, among others. It is noteworthy that two of the papers ranked second and fifth in citations among the 3,934 papers published in IJCAI 2015-2020 and the 5,392 papers published in AAAI 2015-2020, which are the top-tier international artificial intelligence conferences.

8c.png

The Framework of Systematized Basic Algorithms and Open-Source Tools for the Representation Learning of Large-Scale Knowledge Graph

8d.png

International Academic Impact of Two Representative Papers Published in IJCAI and AAAI (Data Source: Google Scholar)

Internationally Influential Open-source System for the Representation Learning of Knowledge Graph

The project was open sourced on GitHub, one of the world's most influential open-source platforms, forming THU-OpenSK, a large-scale knowledge graph representation learning system developed by Tsinghua University. OpenKE, OpenNE, and OpenNRE are three open-source toolkits included in THU-OpenSK, which has been rated 10,722 stars and has been forked 3,180 times. Open-source timing, stars, and forks of the system surpass those of international and Chinese research institutions and enterprises. The influence of THU-OpenSK on open source in the field of knowledge graph representation learning is among the leading positions in the world today, becoming one of the mainstream systematized tools for knowledge graph representation learning worldwide. On GitHub, Tsinghua University's THUNLP project, with THU-OpenSK as its core content, attracts huge amount of attention. Besides THU-OpenSK, OpenI is a new open-source platform of artificial intelligence, which supports the ecological construction of open-source applications.


8f.png

Open-source Influence of OpenKE in THU-OpenSK (Data Source: GitHub)

8h.png

Open-source Influence of THUNLP (Data Source: Gitstar)

Contributing Key Resources for the Development of Knowledge Computing in the Era of Artificial Intelligence

In 2017, Thu-OpenSK was successfully applied to two of the famous large-scale general knowledge graphs in the world, Freebase and Wikidata, establishing two knowledge graph representation models based on 10 million entities and 100 million relational triples each. In the era of artificial intelligence, these are two relatively earlier published large-scale, open-source knowledge graph representation models in the world, contributing key resources to the development of knowledge computing. It has been used by researchers at hundreds of institutions both at home and abroad, resulting in a positive social impact. Ten national invention patents have been obtained as a result of this project. Tencent WeChat has successfully applied some of the techniques of this project, resulting in an improved user experience, thus promoting the intelligent level of the digital industry.

The World Internet Conference (WIC) was established as an international organization on July 12, 2022, headquartered in Beijing, China. It was jointly initiated by Global System for Mobile Communication Association (GSMA), National Computer Network Emergency Response Technical Team/Coordination Center of China (CNCERT), China Internet Network Information Center (CNNIC), Alibaba Group, Tencent, and Zhijiang Lab.

丰满人妻一区二区三区53视频| av在线不卡免费看| 久久久无码中文字幕久...| 韩国中文免费在线视频| 亚洲网站视频福利| 奇米影视888狠狠狠| 91在线网站视频| 激情五月婷婷综合网| 18激情网站| 免费观看黄色的网站| 一级女性全黄久久生活片免费| a毛片在线观看| 亚洲综合在线一区二区| 日韩在线你懂得| 精品久久久久久一区二区里番| 国产一区二区三区在线观看视频| 色悠悠在线视频| 精品成人自拍视频| 欧美性xxxx69| 97影院秋霞午夜在线观看| 日韩中文视频免费在线观看| 久久精品日产第一区二区三区乱码 | 99精品欧美一区二区蜜桃免费| 国精品人妻无码一区二区三区喝尿| 亚洲激情在线观看| 里番在线播放| 精品久久久久久中文字幕人妻最新| 婷婷六月综合网| 手机精品视频在线| 亚洲国产人成综合网站| 欧美18—20岁hd第一次| 亚洲色婷婷久久精品av蜜桃| 久久久午夜电影| 影音先锋中文字幕第一页| 日韩国产高清视频在线| 乱馆动漫1~6集在线观看| 日韩一区二区三区久久| 国产免费观看久久| 羞羞小视频视频| 国产传媒一区| 青青久在线视频| 国产欧美日韩一区| 久久av老司机精品网站导航| 亚洲欧美精选| 亚洲a在线播放| 久久成人高清| 亚洲人做受高潮| 国产精品欧美在线观看| 波多野结衣片子| 日韩视频免费观看高清完整版在线观看 | 欧美国产视频在线| 婷婷久久久久久| 国产噜噜噜噜噜久久久久久久久| 国内精品久久久久影院薰衣草| 国产午夜在线| 超碰成人在线播放| 午夜免费一区| 日韩不卡av| 欧美少妇精品| 日本在线成人一区二区| 麻豆国产入口在线观看免费| 欧美xxxx中国| 国产精品99蜜臀久久不卡二区| 亚洲欧美一级| 女~淫辱の触手3d动漫| 色婷婷综合久色| 免费大片黄在线观看视频网站| 992tv快乐视频| 激情五月播播久久久精品| 欧美黑人巨大xxxx猛交| 91精品91久久久久久| 亚洲性色av| 欧美深性狂猛ⅹxxx深喉 | 亚洲自拍偷拍九九九| 日本黄色女人| 精品国产一区二区三| 伊人天天综合| 在线观看色网站| 日韩激情图片| 国产情侣自拍av| 国产一区二区三区视频免费| 欧美一级二级视频| 亚洲熟妇一区二区| 久久久久综合网| 羞羞视频免费| 国产乱人伦偷精品视频免下载 | 污香蕉视频在线观看| 国产黄视频在线| 欧美成人精品3d动漫h| 午夜精品av| 国产视频在线观看免费| 欧美男生操女生| 日本激情视频网| 成人一级生活片| 成人免费看的视频| 久久无码人妻一区二区三区| 亚洲毛片av在线| 五月天婷婷丁香网| 国产欧美日产一区| 男人的天堂www| 久久综合狠狠综合久久综青草 | 成人网站免费观看| 国产亚洲短视频| 偷窥韩漫第三季| 国产欧美在线视频| 天天做天天爱天天爽| 人人妻人人添人人爽欧美一区| 国产欧美日韩精品一区| 三级中文字幕在线观看| 波多野结衣av无码| 免费成人av网站| 亚洲成a人片综合在线| 日本一区免费网站| 涩涩视频在线观看| 亚洲xxxx在线| 亚洲视频你懂的| 精品国产一区二区三区不卡蜜臂| 国产特黄一级片| av日韩在线看| 欧美性色综合网| 久久视频在线| 麻豆自创视频在线观看| av免费观看不卡| 国产精品欧美激情| 中文字幕在线观看一区二区| 精品成人18| 色偷偷7777www人| 嘿嘿视频在线观看| 欧美极品少妇xxxxⅹ免费视频| 日本不卡电影| 九九九热视频| 香蕉视频xxxx| 国产一区二区黄| 国产福利91精品| 天天做天天爱综合| 新版的欧美在线视频| 成人精品福利| 韩国三级视频在线观看| 日韩三级在线观看| 国产精品高清一区二区| 热re66久久精品国产99re| 婷婷激情四射五月天| 欧美精品在线免费观看| 色综合999| 色多多视频在线播放| www.xxxx精品| 川上优av中文字幕一区二区| 亚洲视频在线免费播放| 午夜免费福利小电影| 久久久av免费| 国产中文字幕一区二区三区| 日本视频一二区| 日本高清不卡码| 国产男女在线观看| 91精品国产91久久久久久久久 | 天天摸天天干天天操| 日韩精品不卡| 日韩三级影视基地| 国产精品第四页| 日韩免费看片| 欧美hdxxxx| 成年人在线免费| av黄色在线看| 男女啪啪网站视频| 国产精品日韩在线一区| 欧美一级一区二区| 不卡大黄网站免费看| 视频在线观看免费影院欧美meiju| 男人资源网站| 国产伦精品一区二区三区高清| 日韩精品一区二区三区在线播放| av电影在线观看不卡| 欧美猛男做受videos| 欧美xxxx性xxxxx高清| 四虎精品在线| a√资源在线| 成人在线播放视频| 色资源网在线观看| 亚洲午夜激情视频| wwwxxxx在线观看| 国产精品人成电影在线观看| 中文字幕一区免费在线观看| 美女视频亚洲色图| 波多野结衣亚洲| www.av在线播放| 天天做天天爱天天爽| 精品国产av一区二区| 黄色一级大片在线免费观看| 日韩成人av影院| 国产99久久九九精品无码| 91成人免费看| 欧美黑人xxx| 亚洲片在线资源| 8v天堂国产在线一区二区| 亚洲午夜精品网| 国产精品色一区二区三区| 粉嫩一区二区三区在线看| 老司机午夜精品| 日韩成人免费电影| 日韩黄色在线播放|